Knowledge is a real strength

Publications / preprints in Maths research

  1. M. Disertori, V. Rapenne, C. Rojas-Molina, X. Zeng, Phase transition in the Integrated Density of States of the Anderson model arising from a supersymmetric sigma model. Preprint arXiv:2211.10268 (2022)
  2. M. Gebert, C. Rojas-Molina, Lifshitz tails for random diagonal perturbations of Laurent matrices. Ann. Henri Poincaré ArXiv (2021).
  3. P. Müller, C. Rojas-Molina, Localisation for Delone operators via Bernoulli randomisation,  Journal d’Analyse Mathématique (online first 2022) . ArXiv .
  4. C. Rojas-Molina, Random Schrödinger Operators and Anderson localization in aperiodic media. Proceedings of QMath14 conference Rev. Math. Physics Vol. 32 (2020) 2060010 ArXiv.
  5. M. Gebert, C. Rojas-Molina, Lifshitz tails for the fractional Anderson model, J Stat Phys 179, 341–353( 2020) ArXiv.
  6. Book Chapter: Random Schrödinger Operators on discrete structures, Collection Séminaires et Congrés SMF 32, 147-187, 2018  ArXiv
  7. A. Klein, S. T. Nguyen, C. Rojas-Molina, Characterization of the metal-insulator transport  transition for the two-particle Anderson model, Ann. Henri Poincaré 18 (7) 2327–2365, 2017. ArXiv
  8. F. Germinet, P. Müller, C. Rojas-Molina, Ergodicity and dynamical localization for Delone-Anderson operators. Rev. Math. Phys. 27, 1550020, 2015. ArXiv
  9. C. Rojas-Molina, The Anderson model with missing sites. Operators and Matrices 8 (1) 287-299, 2014. ArXiv.
  10. C. Rojas-Molina, I. Veselic’, Scale-free unique continuation estimates and applications to random Schrödinger operators. Commun. Math. Phys. 320, 245-274, 2013. ArXiv.
  11. C. Rojas-Molina, Characterization of the Anderson metal-insulator transport transition for non ergodic operators and application, Ann. Henri Poincaré 13 (7) 1575-1611, 2012. ArXiv
  12. F. Germinet, C. Rojas-Molina, Dynamical mobility edge for various random Landau Hamiltonians, RIMS Kokyuroku Bessatsu, Proceedings of the Conference “Spectra of Random Operators and Related Topics”, B27, 25-34, 2011. ArXiv
  13. M. Corgini, C. Rojas-Molina, D.P. Sankovich, Coexistence of Non-Conventional Condensates in Two-Level Bose Atom System, Int. J. of Modern Physics B, Vol 22, (27): 4799-4815, 2008. ArXiv

Other: PhD thesis, Universite de Cergy-Pontoise, 2012.

Publications / preprints in science communication

  • Visualization and social media as tools for Mathematics Communication. In Handbook on Mathematical Science Communication, Eds. Erin Henning and Anna Hartkopf, FU Berlin, Germany (2022). World Scientific.
  • Comics as a tool to communicate neuroscience. The experience of creating comics with neuroscientists of the Work Package1 of the Human Brain Project. Actes Colloque “Telling Science, Drawing Science”, Assoc. STIMULI 2022.